Extremal Pseudocompact Abelian Groups Are Compact Metrizable

نویسندگان

  • W. W. COMFORT
  • Alexander N. Dranishnikov
  • JAN VAN MILL
چکیده

Every pseudocompact Abelian group of uncountable weight has both a proper dense pseudocompact subgroup and a strictly finer pseudocompact group topology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pseudocompact groups : progress and problems ✩

Several months ago the speaker and Jan van Mill gave a proof of this result [W.W. Comfort, J. van Mill, Extremal pseudocompact abelian groups are compact metrizable, Abstracts Amer. Math. Soc. 27 (2006) 78 (Abstract #1014-22-958); W.W. Comfort, J. van Mill, Extremal pseudocompact abelian groups are compact metrizable, Proc. Amer. Math. Soc. 135 (2007) 4039–4044]: A pseudocompact abelian group o...

متن کامل

Non-Abelian Pseudocompact Groups

Here are three recently-established theorems from the literature. (A) (2006) Every non-metrizable compact abelian group K has 2|K|-many proper dense pseudocompact subgroups. (B) (2003) Every non-metrizable compact abelian group K admits 22 |K| -many strictly finer pseudocompact topological group refinements. (C) (2007) Every non-metrizable pseudocompact abelian group has a proper dense pseudoco...

متن کامل

Pontryagin duality in the class of precompact Abelian groups and the Baire property

We present a wide class of reflexive, precompact, non-compact, Abelian topological groupsG determined by three requirements. They must have the Baire property, satisfy the open refinement condition, and contain no infinite compact subsets. This combination of properties guarantees that all compact subsets of the dual group G are finite. We also show that many (non-reflexive) precompact Abelian ...

متن کامل

Extremal pseudocompact Abelian groups : A unified treatment

The authors have shown [Proc. Amer. Math. Soc. 135 (2007), 4039– 4044] that every nonmetrizable, pseudocompact abelian group has both a proper dense pseudocompact subgroup and a strictly finer pseudocompact group topology. Here they give a comprehensive, direct and self-contained proof of this result.

متن کامل

On the supremum of the pseudocompact group topologies

P is the class of pseudocompact Hausdorff topological groups, and P′ is the class of groups which admit a topology T such that (G,T ) ∈ P. It is known that every G= (G,T ) ∈ P is totally bounded, so for G ∈ P′ the supremum T ∨(G) of all pseudocompact group topologies on G and the supremum T #(G) of all totally bounded group topologies on G satisfy T ∨ ⊆ T #. The authors conjecture for abelian G...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007